对新材料进行研究设计的是什么专业
材料化学是一门新兴的交叉学科,属于现代材料科学、化学和化工领域的重要分支,是发展众多高科技领域的基础和先导。在新材料的发现和合成,纳米材料制备和修饰工艺的发展以及表征方法的革新等领域,材料化学作出了的独到贡献。材料化学在原子和分子水准上设计新材料的战略意义有着广阔应用前景。
本专业有机融合并着重培养学生掌握材料科学、化学工程、化学等学科知识与实验技能。本专业旨在培养学生系统掌握纳米材料与功能材料设计、制备与表征的基础理论及专业知识,综合解决材料规模化/工业化生产中的化工技术问题。本专业的毕业生将具备良好的国际化视野、材料工程技术素质和实验技能,是符合市场经济发展和国际竞争需要的、具有较强管理技能的高层次精英人才和复合型技术人才。
材料的广泛应用是材料化学与技术发展的主要动力。在实验室具有优越性能的材料,
不等于在实际工作条件下能得到应用,必须通过应用研究做出判断,而后采取有效措施进行改进。材料在制成零部件以后的使用寿命的确定是材料应用研究的另一方面,关系到安全设计和经济设计,关系到有效利用材料和合理选材。材料的应用研究还是机械部件、电子元件失效分析的基础。通过应用研究可以发现材料中规律性的东西,从而指导材料的改进和发展。 化学工程的发展基本沿着两条主线进行:一方面,经过归纳、综合,形成了以传递为主的三传一反的学科基础理论;另一方面,随着服务对象和应用领域的不断扩大,学科基础理论与应用领域的交叉渗透,不断产生新的增长点和新的科学分支,特别是随着新能源、新材料、生物技术等新兴产业的出现,化学工程在这些新领域发挥巨大作用的同时也不断推动自身理论与技术水平的提高,孵化出材料化学工程、生物化学工程、资源化学工程、环境化学工程等学科分支,为化学工程学科的发展带来了新的活力和发展空间,而材料化学工程是发展最快的新的增长点之一,成为当代化学工程的热点研究领域之一。
研究方法编辑
材料的化学分析方法可分为经典化学分析和仪器分析两类。前者基本上采用化学方法
来达到分析的目的,后者主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法)来获取结果,这类分析方法中有的要应用较为复杂的特定仪器。现代分析仪器发展迅速,且各种分析工作绝大部分是应用仪器分析法来完成的,但是经典的化学分析方法仍有其重要意义。应用化学方法或物理方法来查明材料的化学组分和结构的一种材料试验方法。鉴定物质由哪些元素(或离子)所组成,称为定性分析;测定各组分间量的关系(通常以百分比表示),称为定量分析。有些大型精密仪器测得的结果是相对值,而仪器的校正和校对所需要的标准参考物质一般是用准确的经典化学分析方法测定的。因此,仪器分析法与化学分析法是相辅相成的,很难以一种方法来完全取代另一种。
经典化学分析根据各种元素及其化合物的独特化学性质,利用与之有关的化学反应,对物质进行定性或定量分析。定量化学分析按最后的测定方法可分为重量分析法、滴定分析法和气体容量法。
①重量分析法:使被测组分转化为化学组成一定的化合物或单质与试样中的其他组分分离,然后用称重方法测定该组分的含量。
②滴定分析法:将已知准确浓度的试剂溶液(标准溶液)滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量定量反应完为止,根据所用试剂溶液的体积和浓度计算被测物质的含量。
③气体容量法:通过测量待测气体(或者将待测物质转化成气体形式)被吸收(或发生)的容积来计算待测物质的量。这种方法应用天平滴定管和量气管等作为最终的测量手段。
化学分析
仪器分析根据被测物质成分中的分子、原子、离子或其化合物的某些物理性质和物理化学性质之间的相互关系,应用仪器对物质进行定性或定量分析。有些方法仍不可避免地需要通过一定的化学前处理和必要的化学反应来完成。仪器分析法分为光学、电化学、色谱和质谱等分析法。
光学分析法:根据物质与电磁波(包括从γ射线至无线电波的整个波谱范围)的相互作用,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(红外、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法、荧光分析法、浊度法、火焰光度法、X射线衍射法、X射线荧光分析法、放射化分析法等。